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1 Introduction 
Transport Layer Security (TLS) is the backbone protocol for Internet security today. It 
provides the foundation for expanding security everywhere within the network. 
Security is an element of networking infrastructure that must not be underemphasized 
or taken for granted. Security is critical to the foundation of networking. Adding 
security into existing infrastructures generally comes with a trade-off between cost 
and performance. 

With the addition of a new class of features added into OpenSSL-1.1.0, Intel has been 
able to significantly increase performance for asynchronous processing with Intel® 
QuickAssist Technology (Intel® QAT). This paper explores the design and usage of 
these features: 
• ASYNC_JOB infrastructure 
• ASYNC event notifications 
• Pipelining 
• PRF engine support 

This paper will demonstrate how the combination of these features with Intel® QAT 
results in tangible performance gains, as well as how an application can utilize these 
features at the TLS and EVP level.  

1.1 Terminology 

Table 1. Terminology 

Term Description 

API Application Programming Interface 

BSD Berkeley Software Distribution 

ECDH Elliptic Curve Diffie Hellman 

ECDHE Elliptic Curve Diffie Hellman Ephemeral 

ECDSA Elliptic Curve Digital Signature Algorithm 

EVP EnVeloPe 

Intel® QAT Intel® QuickAssist Technology 

IV Initialization Vector 

RFC Request For Comments 

RSA Rivest–Shamir–Adleman 

PRF Pseudo Random Function 

SSL Secure Sockets Layer 

TCP Transmission Control Protocol 

TLS Transport Layer Security 
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2 Asynchronous Operations 

2.1 Motivation: Design for Performance 
The asynchronous infrastructure added into OpenSSL-1.1.0 provides the capability for 
cryptographic operations to execute asynchronously with respect to the stack and 
application. Generically the infrastructure could be applied to any asynchronous 
operations that might occur, but currently only encompasses cryptographic operations 
executed within the engine framework.  

For the context of this paper, we will define asynchronous operations as those that 
occur independently of the main program’s execution. These operations will be 
initiated and consumed (using events/polling) by the main program, but will occur in 
parallel to those operations. The following two figures are illustrations of the shift in 
execution. 

Figure 1. Synchronous Execution 

 

Synchronous mode of operation forces a single API call to be blocking until the 
completion of the request. When a parallel processing entity is part of the flow of 
execution, there will be times when the processor is not processing data. These are 
represented by dashed lines in Figure 1 and effectively result in missed opportunities 
for increased performance. From the application perspective, this results in blocking at 
the API. When using a separate accelerator underneath this API, the application can 
perform a busy-loop while waiting for a response from the accelerator, or context 
switch using execution models similar to pthreads to allow other useful work to be 
accomplished while waiting. However, both solutions are costly. Polling consumes 
processor cycles and prevents multiple operations from running in parallel. While 
threading allows parallelism and more effectively uses processor cycles, most high 
level context management libraries like pthreads come with a heavy cycle cost to 
execute and manage.  

The asynchronous programming model increases performance by making use of these 
gaps. It also enables parallel submission more efficiently using a parallel processing 
entity (for example, Intel® QuickAssist Technology). 
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Intel® QAT provides acceleration of cryptographic and compression calculations on a 
separate processing entity, processing the requests asynchronously with respect to 
the main program. Having an asynchronous processing model in OpenSSL-1.1.0 
allows for more efficient use of those capabilities, as well as increased overall 
performance.  

Figure 2. Asynchronous Execution 
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2.2 Why Async? 
To efficiently use acceleration capabilities, a mechanism to allow the application to 
continue execution while waiting for the Intel® QAT accelerator to complete 
outstanding operations is required. This programming model is very similar to 
nonblocking Berkeley Software Distribution (BSD) sockets; operations are executed 
outside the context of the main application, allowing the application to make the best 
use of available processor cycles while the accelerator is processing operations in 
parallel. This capability is controlled by the application, which must be updated to 
support the asynchronous behavior, as it has the best knowledge of when to schedule 
each TLS connection. Figure 10 demonstrates increased performance as a result of 
centralizing the scheduling entity in the application. 

2.3 Design 
The Intel® QuickAssist Technology accelerator is accessed through a device driver in 
kernel space and a library in user space. Cryptographic services are provided to 
OpenSSL through the standard engine framework. This engine (refer to Table 8, [1]) 
builds on top of the user space library, interfacing with the Intel® QAT API, which 
allows it to be used across Intel® QAT generations without modification. This layering 
and integration into the OpenSSL framework allows for seamless utilization by 
applications. The addition of asynchronous support into OpenSSL-1.1.0 means that 
the application can also drive higher levels of performance using a standardized API. 
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Figure 3. Intel® QuickAssist Technology Stack Diagram 

 

2.4 ASYNC_JOB Infrastructure 
The ASYNC_JOB infrastructure is built on a number of primitives to allow the creation 
and management of lightweight execution contexts. The infrastructure added to 
OpenSSL-1.1.0 (refer to Table 8, [2]) provides all the necessary functions to create 
and manage ASYNC_JOBs (similar in concept to fibers or co-routines) but does not 
actively manage these resources. Management is left to the user code leveraging this 
capability. Logically, the ASYNC_JOB infrastructure is implemented as part of the 
crypto complex in OpenSSL-1.1.0, namely libcrypto, and is utilized by the TLS stack. 
This allows applications to continue to use the well-known OpenSSL APIs in the same 
manner as before, utilizing ASYNC_JOBs where possible in the application. The 
ASYNC_JOBs are publicly accessible APIs in OpenSSL-1.1.0 and as such, the 
application can also use them directly in conjunction with the EVP APIs or indirectly 
through the OpenSSL-1.1.0 APIs. 
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Figure 4. OpenSSL-1.1.0 ASYNC_JOB Processing Flow 

 

The function call flow in Figure 4 shows one usage scenario from the top level 
SSL_accept (1st) call. When an application identifies a TLS connection as being 
asynchronous capable, standard OpenSSL calls will grab an ASYNC_JOB context, 
thereby allowing the underlying layers of the stack to pause execution, in this example 
in the Intel® QAT engine. This results in the function returning to the application with 
the error status SSL_ERROR_WANT_ASYNC. The application can then register for a file 
descriptor (FD) associated with this TLS connection, and use the standard 
epoll/select/poll calls to wait for availability of a response. Once the application is 
notified, it can call the associated OpenSSL API, SSL_accept (2nd) again with that TLS 
connection, thereby completing the response processing. Alternatively, the application 
can forego using the FD and event notifications, instead of continuously invoking the 
top level OpenSSL API until a successful response is returned.  

2.5 ASYNC Event Notification 
OpenSSL-1.1.0 includes a notification infrastructure to signal when to resume the 
execution of asynchronous crypto operations. The notifications from the crypto engine 
to the application are delivered using events on file descriptors that can be managed 
using the APIs provided by OpenSSL. This provides an abstraction layer that is 
independent of both the application and the particular hardware accelerator being 
used. The file descriptor is owned by the component that originates the event (in this 
case, the engine implementation). This allows the originator to define how they want 
to create and possibly multiplex signals in case there are multiple sources. 
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3 Additional Performance 
Optimizations  

3.1 Pipelining 
Pipelining allows an engine to perform multiple symmetric crypto operations in parallel 
on a single TLS connection, increasing the throughput of bulk transfers. When 
pipelining is enabled for a TLS context, the input buffer of each SSL_write operation is 
split into multiple independent records that can be processed simultaneously by the 
engine. The results of the operation are then written to the socket in the correct order, 
which is transparent to the client. The alternate direction (SSL_read) is also supported 
where sufficient data is available.  

Pipelining provides the greatest benefits when the number of concurrent connections 
to the server/endpoint are small. In this scenario, the parallelizing crypto operations 
for each individual connection leads to a better utilization of the crypto engine. When 
the number of simultaneous TLS connections is large, parallelization comes from the 
application’s ability to maintain a large number of connections. In summary, there are 
two dimensions to achieve parallelization: at the individual connection level, and 
loading across connections.  

Versions of OpenSSL prior to 1.1.0 had a similar functionality called multi-block, but 
pipelining provides two significant improvements over the previous implementation:  
1. Pipelining is not limited to four or eight buffers, but it can be used with an 

arbitrary number of buffers (for example, pipes).  
2. The engine is no longer responsible for creating the headers of the record, hence 

pipelining is not dependent on a particular protocol (for example, TLS).  

To parallelize the encryption of TLS records, they must be independent from a 
cryptographic perspective. For this reason, pipelining is only supported for TLSv1.1 
and TLSv1.2, where the IV is explicit, and does not depend on the previous record. 
There is currently no support for SSLv3, TLSv1.0, or DTLS (all versions) in the 
OpenSSL-1.1.0 branch.  

3.2 Pseudo Random Function (PRF) 
Pseudo Random Function (PRF) is used during the TLS handshake for the expansion of 
secrets to subsequently be used for the purposes of key generation or validation. The 
function definition varies across the TLS versions and is defined in the relevant RFCs 
(refer to Table 8, [3]).  

In OpenSSL 1.1.0, the PRF derive operation is exposed with a new API (refer to Table 
8, [4]) at the EVP level, and can be offloaded to the engine as a single request. 
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This is an important change from previous versions where the operation was actually 
performed as a sequence of digest operations. Although the software implementation 
has not changed, the new API allows the application to decrease the number of 
requests to a hardware accelerator down to one, with a significant reduction in 
overhead for offload. 

A new algorithm has been added to implement the key derivation function for the TLS 
protocol (EVP_PKEY_TLS1_ PRF). The following functions can be used to set the 
message digest (for example, EVP_sha256()), the secret and the seed used for the 
key derivation: 
int EVP_PKEY_CTX_set_tls1_prf_md(EVP_PKEY_CTX *pctx, const EVP_MD *md); 
int EVP_PKEY_CTX_set1_tls1_prf_secret(EVP_PKEY_CTX *pctx, unsigned char 
*sec, int seclen); 
int EVP_PKEY_CTX_add1_tls1_prf_seed(EVP_PKEY_CTX *pctx, unsigned char 
*seed, int seedlen); 

They are integrated into libSSL (refer to Table 8, [5]) and are automatically used for 
the TLS handshake. For more information, refer to the official documentation (refer to 
Table 8, [6]). 

3.3 Intel® QuickAssist Technology (Intel® QAT) 
Engine 
As shown in Figure 3, the Intel® QAT engine for OpenSSL 1.1.0 improves the 
performance of secure applications by offloading the computation of cryptographic 
operations while freeing up the processor to perform other tasks. The engine supports 
the traditional synchronous mode for compatibility with existing applications, as well 
as the new asynchronous mode introduced in OpenSSL 1.1.0 to achieve the best 
possible performance. 

Once the engine has been loaded and initialized, all crypto operations that have been 
registered and executed via the EVP API will be offloaded transparently to Intel® QAT 
engine. This gives access to the performance improvement of Intel® QAT, while 
significantly reducing the time and cost required to integrate the APIs into a new 
application. The code is freely available on GitHub (refer to Table 8, [1]). 

By default, the engine offloads the following crypto algorithms to hardware 
accelerators:  

• Asymmetric PKE Offload  
− RSA Support with PKCS1 Padding for Key Sizes 1024/2048/4096. 
− DH Support for Key Sizes: 768/1024/1536/2048/3072/4096. 
− DSA Support for Key Sizes: 160/1024, 224/2048, 256/2048, 256/3072. 
− ECDH Support for the following curves: 

- NIST Prime Curves: P-192/P-224/P-256/P-384/P-521. 
- NIST Binary Curves: B-163/B-233/B-283/B-409/B-571. 
- NIST Koblitz Curves: K-163/K-233/K-283/K409/K-571. 

− ECDSA Support for the following curves: 
- NIST Prime Curves: P-192/P-224/P-256/P-384/P-521. 
- NIST Binary Curves: B-163/B-233/B-283/B-409/B-571. 
- NIST Koblitz Curves: K-163/K-233/K-283/K409/K-571. 

• Symmetric Chained Cipher Offload: 
− AES128-CBC-HMAC-SHA1/AES256-CBC-HMACSHA1. 
− AES128-CBC-HMAC-SHA256/AES256-CBC-HMACSHA256. 

• Pseudo Random Function (PRF) offload. 
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3.4 Big/Small Request Offload 
Choices may be developed for optimizing performance of small payloads that may 
incur a larger offload cost versus cost of software implementation. 

Given a particular crypto operation, the user can set big/small request thresholds. If a 
value falls below that threshold, the request would not be offloaded. The appropriate 
considerations will depend on the speed of the processor, cost of offload, and whether 
you are optimizing for processor cycles or latency. The application may use the 
following custom engine control command to set the threshold: 
SET_CRYPTO_SMALL_PACKET_OFFLOAD_THRESHOLD. 

§ 
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4 Performance 
This chapter provides Intel benchmark test results. 

4.1 Benchmark and Results 
The work presented is focused on performance features added to OpenSSL-1.1.0 
along with optimizations added throughout the stack to improve cryptographic 
throughput when utilizing Intel® QAT provided on the Intel® Xeon Scalable processor 
Platform Gold 6152 with the Intel® C627 Chipset. These performance improvements 
are concentrated on two different levels: 
1. The algorithmic computation level (openssl speed) described in Algorithmic 

Performance (openssl speed). 
2. The application TLS processing level (NGINX* built on OpenSSL-1.1.0) described 

in Application level benchmark (NGINX-1.10 + OpenSSL-1.1.0). 

The performance gains from asynchronous features are measured by comparing 
benchmarks from the following three configurations: 

• Software: Crypto operations calculated on the main processor using OpenSSL-
1.1.0. 

• Sync: Crypto operations offloaded to Intel® QAT and performed synchronously. 
• Async: Crypto operations offloaded to Intel® QAT and performed asynchronously. 

Note: Platform configuration details are provided in Appendix A.  

4.2 Algorithmic Performance (openssl speed) 
OpenSSL comes with the command line utility openssl speed to measure algorithmic 
performance. The application interfaces directly to the EVP APIs of the crypto module 
in OpenSSL (library libcrypto) and executes the requested algorithm in a tight loop 
across a number of request sizes for a specified period of time. It then totals the 
number of completed operations and reports the resulting throughput in the context of 
the algorithm specified. For example, aes-128-cbc-hmac-sha1 is reported in kilobytes 
per second, while RSA is reported as the number of verifies or signs per second. With 
the inclusion of async, the command line now takes the optional parameter -
async_jobs. This specifies to the application how many jobs to create and execute in 
parallel. All the benchmarks are executed with the process explicitly affinitized to a 
particular core to reduce the number of context switches between different cores. This 
is done manually using the command taskset to set the affinity. 

The following commands were used to gather performance. All measurements for 
asymmetric algorithms were collected using a single core. 
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Table 2. Performance of RSA 2K with openssl speed 

Mode  Command  Sign/s  Verify/s 

Software ./openssl speed -elapsed rsa2048 957 34,483 

Sync  ./openssl speed -elapsed -engine qat rsa2048  2,257 15,625 

Async ./openssl speed -engine qat -elapsed -
async_jobs 36 rsa2048 

100,000 200,000 

Table 3. Performance of ECDSA-P256 with openssl speed 

Mode  Command  Sign/s  Verify/s 
Software ./openssl speed -elapsed ecdsap256 33,898 15,937 

Sync  ./openssl speed -engine qat -elapsed ecdsap256  1,689.2 932 

Async  
./openssl speed -engine qat -elapsed -
async_jobs 36 ecdsap256 

95,238 76,923 

Table 4. Performance of ECDH-P256 Compute Key with openssl speed 

Mode  Command  Operation/s 
Software ./openssl speed -elapsed ecdhp256 24,096 

Sync  ./openssl speed -elapsed -engine qat ecdhp256  1,757.5 

Async  ./openssl speed -engine qat -elapsed -async_jobs 36 
ecdhp256 

142,857 

4.3 Symmetric Algorithm Performance 
The following commands have been used to measure the performance of the cipher 
suite (aes-128-cbc-hmac-sha1). 

Table 5. Commands used for Chained Cipher (aes-128-cbc-hmac-sha1) 

Mode  Command 
Software ./openssl speed -elapsed -evp aes-128-cbc-hmac-sha1 -multi 5  

Sync  ./openssl speed -elapsed -engine qat -evp aes-128-cbc-hmac-sha1 -
multi 5  

Async  ./openssl speed -elapsed -async_jobs 75 -engine qat -evp aes-128-
cbc-hmac-sha1 -multi 5 

Table 6. Chained Cipher: aes-128-cbc-hmac-sha1 (Gbps) 

Mode # cores  64B  256B  1kB  8kB  16kB 
Software 5 11.87 15.5 18.42 19.93 20.12 

Sync  5 0.04 0.16 0.63 5.07 10.12 

Async  5 1.46 5.75 22.58 120.07 142.11 

Note: Refer to Appendix A for configuration details. 
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For the benchmark of symmetric crypto operation, the small packet offload has been 
explicitly enabled to show the raw performance of the hardware accelerator. When this 
option is disabled (default), the performance for small packets are almost on par with 
software. As of OpenSSL-1.1.0, the pipeline feature was not enabled in the standard 
release. In conjunction with async, this feature will further increase bulk cipher 
performance. 

4.4 Application-Level Benchmark (NGINX-1.10 + 
OpenSSL-1.1.0) 
SSL/TLS is predominantly used in client-server based applications to provide security 
for communication of data. From a security protocol perspective, TLS’s ability to 
secure communications between two TCP ports is one of its primary advantages. An 
individual port typically translates to an individual application on a client system, 
providing isolation between the many applications that could be potential attack points 
for the client. 

This client-centered view is important. As the benchmark metrics will show, client 
metrics are the primary performance driver. For a client, the ability to connect to 
many services and transfer data seamlessly is key. On the server side, this translates 
into the number of new connections per second a server can create. This viewpoint 
identifies the key metric to drive analysis with the number of SSL/TLS handshakes per 
second for a SSL/TLS server. 

4.5 Benchmark Topology 
For the measurement of SSL/TLS performance, a web server was analyzed using 
NGINX* as the management application. The topology for the benchmark is shown in 
the following figure.  

Figure 5. Client-Server Benchmark Overview 

 

Note: For more complete information about performance and benchmark results, visit 
www.intel.com/benchmarks. 

In this configuration, a large number of clients are connected to a single server 
system, with each client running in a loop fetching data from the server. Once each 
client completes its operation, it will loop and initiate the same operation again, 
running for a predetermined amount of time. 
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The following figure shows the physical topology for the Web Server benchmark used 
for TLS handshake measurements. The client issues requests using s_time, a utility 
provided with OpenSSL, which is forked to provide 500-700 instances of s_time 
running simultaneously to scale to full performance. Each instance runs as a separate 
process and targets a specific TCP port on the server. The s_time command line used 
is used in the following form: ./openssl-1.0.2d/apps/openssl s_time -connect 
192.168.1.1:4400 -new –nbio -time 200 -cipher <cipher suite e.g. AES128-
SHA> 

Figure 6. Web-Server Physical Topology 

NGINX (port 4400)
Worker Processes 

matches the 
number of 

hyperthreads

10G NIC
192.168.1.1

10G NIC
192.168.2.1

Server (Intel® Xeon® Gold 6152 processor)

S_time
192.168.1.1.4400

Client

10G NIC
192.168.1.2

10G NIC
192.168.2.2

S_time
192.168.2.1.4404

S_time
192.168.y.1:xxxx

Each s_time block is 500-700 
instances of s_time run as separate 

processes, allowing the OS to 
schedule their core assignment  

Note: Refer to Appendix A for configuration details. 

On the server side, the NGINX* configuration file (along with the client request) 
coordinate the cipher suites and key negotiation algorithms to use in each test. For 
these benchmarks, the following combinations were used: 

Table 7. TLS Benchmark Test Parameters 

Application Data  0 byte file size 

Key Negotiation 
Algorithm  

RSA-2K 
ECDHE-RSA-2K (P256) 
ECDHE-ECDSA (P256) 

Protocol  TLS v1.2 

Cipher Suite  AES_128_CBC_HMAC_SHA1 
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Figure 7. RSA-2K Connections per Second (NGINX-1.10 + OpenSSL-1.1.0) 

 

Figure 8. ECDHE-RSA-2K Connections per Second (NGINX-1.10 + OpenSSL-1.1.0) 
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Figure 9. ECDHE-ECDSA Connections per Second (NGINX-1.10 + OpenSSL-1.1.0) 

 

Figure 7, Figure 8, and Figure 9 represent measurements taken with the same 
benchmark and stack, using Intel® QAT with OpenSSL-1.1.0 asynchronous features 
and OpenSSL-1.1.0’s default software implementations for the three most popular key 
negotiation algorithms (ECDHE-RSA2K (P256), ECDHE-ECDSA (P256), and RSA-2K). 
This benchmark is scaled by limiting the resources available to NGINX* to a specified 
number of cores and hyperthreads. If we look in more detail at the one core two hyper 
thread (1C/2T) measurement for RSA-2K TLS-1.2: 

• OpenSSL-1.1.0 Software: 964 CPS (connections per second) 
• Intel® QuickAssist Technology Engine: 5,507 CPS 

In conjunction with the new asynchronous features added to OpenSSL-1.1.0, Intel® 
QAT is able to achieve a performance gain of approximately 825% performance 
compared to the standard software implementation. This performance increase is 
measured by issuing a sufficient number of client TLS connections to drive the server 
processor for the chosen core configuration to greater-than-90% utilization. This 
method is then extended to additional core configurations until reaching the limit of 
Intel® QAT’s ability to calculate the cryptographic operations being targeted. The limits 
for the Intel® Communications Chipset 8950 are as follows: 

• RSA-2K: 102 K decryptions per second 
• ECDHE+RSA-2K: 42.03 K operations per second 
• ECDHE+ECDSA (P256): 48.33 K operations per second 

Intel® QuickAssist Technology + OpenSSL-1.1.0 asynchronous features deliver a gain 
over software (up to the device limits) of: 

• RSA-2K ~5.5 times 
• ECDHE-RSA-2K ~5 times 
• ECDHE-ECDSA ~1.3 times 

Note: Further improvements are currently being developed to increase performance gains 
when using ECDHE-ECDSA. 
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The core to hyperthread pairing for asynchronous measurements scales well for all 
algorithms, meaning as more cores are added, the increase in connections per second 
trends linearly. For RSA-2K, the limit of the hardware accelerator is reached using 
around 18 cores/36 hyper threads (which translates to 360 NGINX* worker 
processes), while for ECDHE-RSA-2K and ECDHE-ECDSA, they scale well up to the 
hardware limits. 

Figure 10. Comparison of Synchronous versus Asynchronous Infrastructure 

 

These three modes can be easily configured using the NGINX* patch, which allows you 
to enable and disable the QAT_ engine using the NGINX* config directive ssl_engine 
qat;. Similarly, synch/asynch can be toggled using the directive ssl_asynch on. The 
benchmark is run with the same mapping of NGINX* worker processes to cores/hyper 
threads as previously mentioned. 

As shown by the results in Figure 10, there is a clear advantage to using the 
asynchronous model when a separate processing entity is present for cryptographic 
calculations within the system. It allows for efficient parallel processing of the 
workloads and better utilization of the available hardware. It should be noted that 
while similar performance results can be achieved by parallelizing with a high level 
context mechanism such as threads or processes, those methods consume 
significantly more processor cycles to achieve the same results as the asynchronous 
model. 

§ 
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5 Conclusion 
The OpenSSL 1.1.0 release provides many new features. This work has focused on the 
asynchronous capabilities, which demonstrate a significant performance gain when 
utilizing a high-performing asynchronous engine (Intel® QuickAssist Technology C627) 
with the ASYNC_JOB infrastructure to efficiently manage the processing flow. For 
asymmetric cryptographic algorithms such as RSA-2K, there is a demonstrable 
performance gain of 7.5 times versus software with the same number of cores, while 
at the algorithm level the gain shows a more dramatic performance increase of 36 
times. 

While these levels of performance may already be achievable with bespoke SSL/TLS 
stacks, this is the first introduction to the mainline of a popular SSL/TLS stack 
enabling these levels. As a standardized interface in OpenSSL, it lays the 
infrastructure for many applications to adopt these features and opens a significant 
potential to increase SSL/TLS more generally. 

§ 
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Appendix A  Platform Details 
 

Hardware 

Motherboard Intel® Purley 

Processor 

Product Intel® Xeon® Gold 6152 processor  @ 2.10 GHz 

Speed (MHz) 2.10 GHz 

No of 
processor 22 cores /33 threads per socket 

Stepping H0 

Technology 14 nm 

Supported 
Instructions 
Sets 

fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca 
cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm 
pbe syscall nx pdpe1gb rdtscp lm constant_tsc art 
arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc 
aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx 
smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 
sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx 
f16c rdrand lahf_lm abm 3dnowprefetch epb intel_pt 
tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust 
bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx avx512f 
rdseed adx smap clflushopt clwb avx512cd xsaveopt xsavec 
xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local 
dtherm ida arat pln pts hwp hwp_act_window hwp_epp 
hwp_pkg_req 

Level 1 Data 
Cache 32 KB 

Level 1 
Instruction 
Cache 

32 KB 

L2 Cache 1024 KB 

LLC Cache 30976 KB 

Memory 

Vendor Kingston 

Type DDR4-2400 

Part Number KVR24R170/16 

Size  16384 MB 

Channel 6 

BIOS 

Vendor Intel 

Version PLYDCRB1.86B.0114.R11.1612211902 

Build Date 21-Dec-16 

Compiler 
Versions 

GCC Version 5.4.0 

Linker 
Version (LD) 2.26.1 
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Assembler 
Version (AS) 2.26.1 

Software 

OS 
Vendor Ubuntu 16.04.1 LTS 

Kernel 
Version 4.4.0-21 

Benchmark 
Software 

Glibc-2.24 
CBC  Data Collected on: 
   NGINX-1.9.6 
   OpenSSL-1.0.1u 
   QATL1.0.0-15 
GCM and PKE Data Collected on: 
   NGINX-1.10-3 
   OpenSSL-1.1.0e 
   QATL.1.0.0-15 
   QAT Engine v0.5.24 

 

Table 8. References 

Item 
# Description 

[1] "QAT_engine [github]" https://github.com/01org/QAT_Engine. 

[2]  "ASYNC_start_job" 
https://www.openssl.org/docs/man1.1.0/crypto/ASYNC_start_job.html. 

[3]  "rfc5246," https://www.ietf.org/rfc/rfc5246.txt. 

[4]  
"Pseudo Random Function (API addition)" 
https://github.com/openssl/openssl/commit/1eff3485b63f84956b5f212aa4d853783
bf6c8b5. 

[5]  
"PRF integration into libssl" 
https://github.com/fernandmorausky/openssl/commit/b7d60e7662f903fc2e5a137bf
1fce9a6b431776a. 

[6]  
"PRF EVP API man page" 
https://www.openssl.org/docs/manmaster/man3/EVP_PKEY_CTX_set_tls1_prf_md.
html. 

[7]  
"ASYNC_WAIT_CTX" 
https://www.openssl.org/docs/manmaster/man3/EVP_PKEY_CTX_set_tls1_prf_md.
html. 

[8]  "SSL_get_error" https://www.openssl.org/docs/man1.1.0/ssl/SSL_get_error.html. 

[9]  "SSL_get_all_async_fds" 
https://www.openssl.org/docs/man1.1.0/ssl/SSL_get_all_async_fds.html. 

[10]  "SSL_CTX_set_max_pipelines" 
https://www.openssl.org/docs/man1.1.0/ssl/SSL_CTX_set_max_pipelines.html. 

https://github.com/fernandmorausky/openssl/commit/b7d60e7662f903fc2e5a137bf1fce9a6b431776a
https://github.com/fernandmorausky/openssl/commit/b7d60e7662f903fc2e5a137bf1fce9a6b431776a
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Item 
# Description 

[11]  
"SSL_CTX_set_split_send_fragment" 
https://www.openssl.org/docs/man1.1.0/ssl/SSL_CTX_set_split_send_fragment.ht
ml. 

[12]  
"Intel QuickAssist Technology engine build options" 
https://github.com/01org/QAT_Engine#intel-quickassist-technology-openssl-
engine-build-options. 

[13]  "OpenSSL configuration file" https://github.com/01org/QAT_Engine#using-the-
openssl-configuration-file-to-loadinitialize-engines. 

[14]  "ENGINE_set_default" 
https://www.openssl.org/docs/man1.1.0/crypto/ENGINE_set_default.html. 

[15]  "QAT_engine specific messages" https://github.com/01org/QAT_Engine#intel-
quickassist-technology-openssl-engine-specific-messages. 

[16]  "SSL_set_mode" https://www.openssl.org/docs/man1.1.0/ssl/SSL_set_mode.html. 

[17]  "Async job pool" https://github.com/openssl/openssl/blob/OpenSSL_1_1_0-
stable/ssl/ssl_lib.c. 

[18]  "Epoll openssl speed" https://github.com/openssl/openssl/blob/OpenSSL_1_1_0-
stable/apps/speed.c. 

[19]  "Dummy Async Engine" https://github.com/openssl/openssl/blob/OpenSSL_1_1_0-
stable/engines/e_dasync.c. 

Software and workloads used in performance tests may have been optimized for 
performance only on Intel microprocessors. Performance tests are measured using 
specific computer systems, components, software, operations and functions. Any 
change to any of those factors may cause the results to vary. You should consult other 
information and performance tests to assist you in fully evaluating your contemplated 
purchases, including the performance of that product when combined with other 
products. For more information, visit http://www.intel.com/performance. 
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