

Document Number: 337003-001

Intel® QuickAssist Technology
(Intel® QAT) and OpenSSL-1.1.0:
Performance

White Paper

January 2018

Revision 001

Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
White Paper January 2018
2 Document Number: 337003-001

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with
your system manufacturer or retailer or learn more at intel.com.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer
or retailer.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address
exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your
device or system.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more information go to www.intel.com/benchmarks.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or visit www.intel.com/design/literature.htm. No computer system can be absolutely secure.

Intel, Xeon, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2018, Intel Corporation. All rights reserved.

https://urldefense.proofpoint.com/v2/url?u=http-3A__www.intel.com_benchmarks&d=DwMFAg&c=t3lWmpkR7R5WvkB3-rDjug&r=AiH4zq2s59sLCZJPs49s0ZT5P6AYpnfUHQI8WNNTAWM&m=Won98B5_JXZZTPmahXLor1vxRBtuE794_4VSztpKGQA&s=JDsmcTovc8fJC5xhLvj9aiGS7evW-lehdnrKaKzAQT0&e=

 Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
January 2018 White Paper
Document Number: 337003-001 3

Contents
1 Introduction .. 6

1.1 Terminology ... 6

2 Asynchronous Operations ... 7
2.1 Motivation: Design for Performance ... 7
2.2 Why Async? ... 8
2.3 Design ... 8
2.4 ASYNC_JOB Infrastructure ... 9
2.5 ASYNC Event Notification ... 10

3 Additional Performance Optimizations .. 11
3.1 Pipelining ... 11
3.2 Pseudo Random Function (PRF) .. 11
3.3 Intel® QuickAssist Technology (Intel® QAT) Engine 12
3.4 Big/Small Request Offload.. 13

4 Performance ... 14
4.1 Benchmark and Results ... 14
4.2 Algorithmic Performance (openssl speed) ... 14
4.3 Symmetric Algorithm Performance .. 15
4.4 Application-Level Benchmark (NGINX-1.10 + OpenSSL-1.1.0) 16
4.5 Benchmark Topology ... 16

5 Conclusion .. 21

Appendix A Platform Details ... 22

Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
White Paper January 2018
4 Document Number: 337003-001

Figures

Figure 1. Synchronous Execution ... 7
Figure 2. Asynchronous Execution .. 8
Figure 3. Intel® QuickAssist Technology Stack Diagram .. 9
Figure 4. OpenSSL-1.1.0 ASYNC_JOB Processing Flow .. 10
Figure 5. Client-Server Benchmark Overview .. 16
Figure 6. Web-Server Physical Topology ... 17
Figure 7. RSA-2K Connections per Second (NGINX-1.10 + OpenSSL-1.1.0) 18
Figure 8. ECDHE-RSA-2K Connections per Second (NGINX-1.10 + OpenSSL-1.1.0) 18
Figure 9. ECDHE-ECDSA Connections per Second (NGINX-1.10 + OpenSSL-1.1.0) 19
Figure 10. Comparison of Synchronous versus Asynchronous Infrastructure 20

Tables

Table 1. Terminology ... 6
Table 2. Performance of RSA 2K with openssl speed ... 15
Table 3. Performance of ECDSA-P256 with openssl speed ... 15
Table 4. Performance of ECDH-P256 Compute Key with openssl speed 15
Table 5. Commands used for Chained Cipher (aes-128-cbc-hmac-sha1) 15
Table 6. Chained Cipher: aes-128-cbc-hmac-sha1 (Gbps) ... 15
Table 7. TLS Benchmark Test Parameters ... 17
Table 8. References ... 23

 Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
January 2018 White Paper
Document Number: 337003-001 5

Revision History

Document
Number

Revision
Number

Description Revision Date

337003 001 Initial release. January 2018

§

Introduction

Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
White Paper January 2018
6 Document Number: 337003-001

1 Introduction
Transport Layer Security (TLS) is the backbone protocol for Internet security today. It
provides the foundation for expanding security everywhere within the network.
Security is an element of networking infrastructure that must not be underemphasized
or taken for granted. Security is critical to the foundation of networking. Adding
security into existing infrastructures generally comes with a trade-off between cost
and performance.

With the addition of a new class of features added into OpenSSL-1.1.0, Intel has been
able to significantly increase performance for asynchronous processing with Intel®
QuickAssist Technology (Intel® QAT). This paper explores the design and usage of
these features:
• ASYNC_JOB infrastructure
• ASYNC event notifications
• Pipelining
• PRF engine support

This paper will demonstrate how the combination of these features with Intel® QAT
results in tangible performance gains, as well as how an application can utilize these
features at the TLS and EVP level.

1.1 Terminology

Table 1. Terminology

Term Description

API Application Programming Interface

BSD Berkeley Software Distribution

ECDH Elliptic Curve Diffie Hellman

ECDHE Elliptic Curve Diffie Hellman Ephemeral

ECDSA Elliptic Curve Digital Signature Algorithm

EVP EnVeloPe

Intel® QAT Intel® QuickAssist Technology

IV Initialization Vector

RFC Request For Comments

RSA Rivest–Shamir–Adleman

PRF Pseudo Random Function

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

§

Asynchronous Operations

 Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
January 2018 White Paper
Document Number: 337003-001 7

2 Asynchronous Operations

2.1 Motivation: Design for Performance
The asynchronous infrastructure added into OpenSSL-1.1.0 provides the capability for
cryptographic operations to execute asynchronously with respect to the stack and
application. Generically the infrastructure could be applied to any asynchronous
operations that might occur, but currently only encompasses cryptographic operations
executed within the engine framework.

For the context of this paper, we will define asynchronous operations as those that
occur independently of the main program’s execution. These operations will be
initiated and consumed (using events/polling) by the main program, but will occur in
parallel to those operations. The following two figures are illustrations of the shift in
execution.

Figure 1. Synchronous Execution

Synchronous mode of operation forces a single API call to be blocking until the
completion of the request. When a parallel processing entity is part of the flow of
execution, there will be times when the processor is not processing data. These are
represented by dashed lines in Figure 1 and effectively result in missed opportunities
for increased performance. From the application perspective, this results in blocking at
the API. When using a separate accelerator underneath this API, the application can
perform a busy-loop while waiting for a response from the accelerator, or context
switch using execution models similar to pthreads to allow other useful work to be
accomplished while waiting. However, both solutions are costly. Polling consumes
processor cycles and prevents multiple operations from running in parallel. While
threading allows parallelism and more effectively uses processor cycles, most high
level context management libraries like pthreads come with a heavy cycle cost to
execute and manage.

The asynchronous programming model increases performance by making use of these
gaps. It also enables parallel submission more efficiently using a parallel processing
entity (for example, Intel® QuickAssist Technology).

Asynchronous Operations

Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
White Paper January 2018
8 Document Number: 337003-001

Intel® QAT provides acceleration of cryptographic and compression calculations on a
separate processing entity, processing the requests asynchronously with respect to
the main program. Having an asynchronous processing model in OpenSSL-1.1.0
allows for more efficient use of those capabilities, as well as increased overall
performance.

Figure 2. Asynchronous Execution

Application

OpenSSL

QAT_engine

Time
po

st
 re

qu
es

ts
no

n-
bl

oc
ki

ng

ca
lls

Asynchronous Mode

co
ns

um
e

re
sp

on
se

s

1 2 3 1 2 3

Represents the start of the first operation 1

1 Represents the end of the first operation

2.2 Why Async?
To efficiently use acceleration capabilities, a mechanism to allow the application to
continue execution while waiting for the Intel® QAT accelerator to complete
outstanding operations is required. This programming model is very similar to
nonblocking Berkeley Software Distribution (BSD) sockets; operations are executed
outside the context of the main application, allowing the application to make the best
use of available processor cycles while the accelerator is processing operations in
parallel. This capability is controlled by the application, which must be updated to
support the asynchronous behavior, as it has the best knowledge of when to schedule
each TLS connection. Figure 10 demonstrates increased performance as a result of
centralizing the scheduling entity in the application.

2.3 Design
The Intel® QuickAssist Technology accelerator is accessed through a device driver in
kernel space and a library in user space. Cryptographic services are provided to
OpenSSL through the standard engine framework. This engine (refer to Table 8, [1])
builds on top of the user space library, interfacing with the Intel® QAT API, which
allows it to be used across Intel® QAT generations without modification. This layering
and integration into the OpenSSL framework allows for seamless utilization by
applications. The addition of asynchronous support into OpenSSL-1.1.0 means that
the application can also drive higher levels of performance using a standardized API.

Asynchronous Operations

 Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
January 2018 White Paper
Document Number: 337003-001 9

Figure 3. Intel® QuickAssist Technology Stack Diagram

2.4 ASYNC_JOB Infrastructure
The ASYNC_JOB infrastructure is built on a number of primitives to allow the creation
and management of lightweight execution contexts. The infrastructure added to
OpenSSL-1.1.0 (refer to Table 8, [2]) provides all the necessary functions to create
and manage ASYNC_JOBs (similar in concept to fibers or co-routines) but does not
actively manage these resources. Management is left to the user code leveraging this
capability. Logically, the ASYNC_JOB infrastructure is implemented as part of the
crypto complex in OpenSSL-1.1.0, namely libcrypto, and is utilized by the TLS stack.
This allows applications to continue to use the well-known OpenSSL APIs in the same
manner as before, utilizing ASYNC_JOBs where possible in the application. The
ASYNC_JOBs are publicly accessible APIs in OpenSSL-1.1.0 and as such, the
application can also use them directly in conjunction with the EVP APIs or indirectly
through the OpenSSL-1.1.0 APIs.

Asynchronous Operations

Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
White Paper January 2018
10 Document Number: 337003-001

Figure 4. OpenSSL-1.1.0 ASYNC_JOB Processing Flow

The function call flow in Figure 4 shows one usage scenario from the top level
SSL_accept (1st) call. When an application identifies a TLS connection as being
asynchronous capable, standard OpenSSL calls will grab an ASYNC_JOB context,
thereby allowing the underlying layers of the stack to pause execution, in this example
in the Intel® QAT engine. This results in the function returning to the application with
the error status SSL_ERROR_WANT_ASYNC. The application can then register for a file
descriptor (FD) associated with this TLS connection, and use the standard
epoll/select/poll calls to wait for availability of a response. Once the application is
notified, it can call the associated OpenSSL API, SSL_accept (2nd) again with that TLS
connection, thereby completing the response processing. Alternatively, the application
can forego using the FD and event notifications, instead of continuously invoking the
top level OpenSSL API until a successful response is returned.

2.5 ASYNC Event Notification
OpenSSL-1.1.0 includes a notification infrastructure to signal when to resume the
execution of asynchronous crypto operations. The notifications from the crypto engine
to the application are delivered using events on file descriptors that can be managed
using the APIs provided by OpenSSL. This provides an abstraction layer that is
independent of both the application and the particular hardware accelerator being
used. The file descriptor is owned by the component that originates the event (in this
case, the engine implementation). This allows the originator to define how they want
to create and possibly multiplex signals in case there are multiple sources.

§

Additional Performance Optimizations

 Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
January 2018 White Paper
Document Number: 337003-001 11

3 Additional Performance
Optimizations

3.1 Pipelining
Pipelining allows an engine to perform multiple symmetric crypto operations in parallel
on a single TLS connection, increasing the throughput of bulk transfers. When
pipelining is enabled for a TLS context, the input buffer of each SSL_write operation is
split into multiple independent records that can be processed simultaneously by the
engine. The results of the operation are then written to the socket in the correct order,
which is transparent to the client. The alternate direction (SSL_read) is also supported
where sufficient data is available.

Pipelining provides the greatest benefits when the number of concurrent connections
to the server/endpoint are small. In this scenario, the parallelizing crypto operations
for each individual connection leads to a better utilization of the crypto engine. When
the number of simultaneous TLS connections is large, parallelization comes from the
application’s ability to maintain a large number of connections. In summary, there are
two dimensions to achieve parallelization: at the individual connection level, and
loading across connections.

Versions of OpenSSL prior to 1.1.0 had a similar functionality called multi-block, but
pipelining provides two significant improvements over the previous implementation:
1. Pipelining is not limited to four or eight buffers, but it can be used with an

arbitrary number of buffers (for example, pipes).
2. The engine is no longer responsible for creating the headers of the record, hence

pipelining is not dependent on a particular protocol (for example, TLS).

To parallelize the encryption of TLS records, they must be independent from a
cryptographic perspective. For this reason, pipelining is only supported for TLSv1.1
and TLSv1.2, where the IV is explicit, and does not depend on the previous record.
There is currently no support for SSLv3, TLSv1.0, or DTLS (all versions) in the
OpenSSL-1.1.0 branch.

3.2 Pseudo Random Function (PRF)
Pseudo Random Function (PRF) is used during the TLS handshake for the expansion of
secrets to subsequently be used for the purposes of key generation or validation. The
function definition varies across the TLS versions and is defined in the relevant RFCs
(refer to Table 8, [3]).

In OpenSSL 1.1.0, the PRF derive operation is exposed with a new API (refer to Table
8, [4]) at the EVP level, and can be offloaded to the engine as a single request.

Additional Performance Optimizations

Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
White Paper January 2018
12 Document Number: 337003-001

This is an important change from previous versions where the operation was actually
performed as a sequence of digest operations. Although the software implementation
has not changed, the new API allows the application to decrease the number of
requests to a hardware accelerator down to one, with a significant reduction in
overhead for offload.

A new algorithm has been added to implement the key derivation function for the TLS
protocol (EVP_PKEY_TLS1_ PRF). The following functions can be used to set the
message digest (for example, EVP_sha256()), the secret and the seed used for the
key derivation:
int EVP_PKEY_CTX_set_tls1_prf_md(EVP_PKEY_CTX *pctx, const EVP_MD *md);
int EVP_PKEY_CTX_set1_tls1_prf_secret(EVP_PKEY_CTX *pctx, unsigned char
*sec, int seclen);
int EVP_PKEY_CTX_add1_tls1_prf_seed(EVP_PKEY_CTX *pctx, unsigned char
*seed, int seedlen);

They are integrated into libSSL (refer to Table 8, [5]) and are automatically used for
the TLS handshake. For more information, refer to the official documentation (refer to
Table 8, [6]).

3.3 Intel® QuickAssist Technology (Intel® QAT)
Engine
As shown in Figure 3, the Intel® QAT engine for OpenSSL 1.1.0 improves the
performance of secure applications by offloading the computation of cryptographic
operations while freeing up the processor to perform other tasks. The engine supports
the traditional synchronous mode for compatibility with existing applications, as well
as the new asynchronous mode introduced in OpenSSL 1.1.0 to achieve the best
possible performance.

Once the engine has been loaded and initialized, all crypto operations that have been
registered and executed via the EVP API will be offloaded transparently to Intel® QAT
engine. This gives access to the performance improvement of Intel® QAT, while
significantly reducing the time and cost required to integrate the APIs into a new
application. The code is freely available on GitHub (refer to Table 8, [1]).

By default, the engine offloads the following crypto algorithms to hardware
accelerators:

• Asymmetric PKE Offload
− RSA Support with PKCS1 Padding for Key Sizes 1024/2048/4096.
− DH Support for Key Sizes: 768/1024/1536/2048/3072/4096.
− DSA Support for Key Sizes: 160/1024, 224/2048, 256/2048, 256/3072.
− ECDH Support for the following curves:

- NIST Prime Curves: P-192/P-224/P-256/P-384/P-521.
- NIST Binary Curves: B-163/B-233/B-283/B-409/B-571.
- NIST Koblitz Curves: K-163/K-233/K-283/K409/K-571.

− ECDSA Support for the following curves:
- NIST Prime Curves: P-192/P-224/P-256/P-384/P-521.
- NIST Binary Curves: B-163/B-233/B-283/B-409/B-571.
- NIST Koblitz Curves: K-163/K-233/K-283/K409/K-571.

• Symmetric Chained Cipher Offload:
− AES128-CBC-HMAC-SHA1/AES256-CBC-HMACSHA1.
− AES128-CBC-HMAC-SHA256/AES256-CBC-HMACSHA256.

• Pseudo Random Function (PRF) offload.

Additional Performance Optimizations

 Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
January 2018 White Paper
Document Number: 337003-001 13

3.4 Big/Small Request Offload
Choices may be developed for optimizing performance of small payloads that may
incur a larger offload cost versus cost of software implementation.

Given a particular crypto operation, the user can set big/small request thresholds. If a
value falls below that threshold, the request would not be offloaded. The appropriate
considerations will depend on the speed of the processor, cost of offload, and whether
you are optimizing for processor cycles or latency. The application may use the
following custom engine control command to set the threshold:
SET_CRYPTO_SMALL_PACKET_OFFLOAD_THRESHOLD.

§

Performance

Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
White Paper January 2018
14 Document Number: 337003-001

4 Performance
This chapter provides Intel benchmark test results.

4.1 Benchmark and Results
The work presented is focused on performance features added to OpenSSL-1.1.0
along with optimizations added throughout the stack to improve cryptographic
throughput when utilizing Intel® QAT provided on the Intel® Xeon Scalable processor
Platform Gold 6152 with the Intel® C627 Chipset. These performance improvements
are concentrated on two different levels:
1. The algorithmic computation level (openssl speed) described in Algorithmic

Performance (openssl speed).
2. The application TLS processing level (NGINX* built on OpenSSL-1.1.0) described

in Application level benchmark (NGINX-1.10 + OpenSSL-1.1.0).

The performance gains from asynchronous features are measured by comparing
benchmarks from the following three configurations:

• Software: Crypto operations calculated on the main processor using OpenSSL-
1.1.0.

• Sync: Crypto operations offloaded to Intel® QAT and performed synchronously.
• Async: Crypto operations offloaded to Intel® QAT and performed asynchronously.

Note: Platform configuration details are provided in Appendix A.

4.2 Algorithmic Performance (openssl speed)
OpenSSL comes with the command line utility openssl speed to measure algorithmic
performance. The application interfaces directly to the EVP APIs of the crypto module
in OpenSSL (library libcrypto) and executes the requested algorithm in a tight loop
across a number of request sizes for a specified period of time. It then totals the
number of completed operations and reports the resulting throughput in the context of
the algorithm specified. For example, aes-128-cbc-hmac-sha1 is reported in kilobytes
per second, while RSA is reported as the number of verifies or signs per second. With
the inclusion of async, the command line now takes the optional parameter -
async_jobs. This specifies to the application how many jobs to create and execute in
parallel. All the benchmarks are executed with the process explicitly affinitized to a
particular core to reduce the number of context switches between different cores. This
is done manually using the command taskset to set the affinity.

The following commands were used to gather performance. All measurements for
asymmetric algorithms were collected using a single core.

Performance

 Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
January 2018 White Paper
Document Number: 337003-001 15

Table 2. Performance of RSA 2K with openssl speed

Mode Command Sign/s Verify/s

Software ./openssl speed -elapsed rsa2048 957 34,483

Sync ./openssl speed -elapsed -engine qat rsa2048 2,257 15,625

Async ./openssl speed -engine qat -elapsed -
async_jobs 36 rsa2048

100,000 200,000

Table 3. Performance of ECDSA-P256 with openssl speed

Mode Command Sign/s Verify/s
Software ./openssl speed -elapsed ecdsap256 33,898 15,937

Sync ./openssl speed -engine qat -elapsed ecdsap256 1,689.2 932

Async
./openssl speed -engine qat -elapsed -
async_jobs 36 ecdsap256

95,238 76,923

Table 4. Performance of ECDH-P256 Compute Key with openssl speed

Mode Command Operation/s
Software ./openssl speed -elapsed ecdhp256 24,096

Sync ./openssl speed -elapsed -engine qat ecdhp256 1,757.5

Async ./openssl speed -engine qat -elapsed -async_jobs 36
ecdhp256

142,857

4.3 Symmetric Algorithm Performance
The following commands have been used to measure the performance of the cipher
suite (aes-128-cbc-hmac-sha1).

Table 5. Commands used for Chained Cipher (aes-128-cbc-hmac-sha1)

Mode Command
Software ./openssl speed -elapsed -evp aes-128-cbc-hmac-sha1 -multi 5

Sync ./openssl speed -elapsed -engine qat -evp aes-128-cbc-hmac-sha1 -
multi 5

Async ./openssl speed -elapsed -async_jobs 75 -engine qat -evp aes-128-
cbc-hmac-sha1 -multi 5

Table 6. Chained Cipher: aes-128-cbc-hmac-sha1 (Gbps)

Mode # cores 64B 256B 1kB 8kB 16kB
Software 5 11.87 15.5 18.42 19.93 20.12

Sync 5 0.04 0.16 0.63 5.07 10.12

Async 5 1.46 5.75 22.58 120.07 142.11

Note: Refer to Appendix A for configuration details.

Performance

Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
White Paper January 2018
16 Document Number: 337003-001

For the benchmark of symmetric crypto operation, the small packet offload has been
explicitly enabled to show the raw performance of the hardware accelerator. When this
option is disabled (default), the performance for small packets are almost on par with
software. As of OpenSSL-1.1.0, the pipeline feature was not enabled in the standard
release. In conjunction with async, this feature will further increase bulk cipher
performance.

4.4 Application-Level Benchmark (NGINX-1.10 +
OpenSSL-1.1.0)
SSL/TLS is predominantly used in client-server based applications to provide security
for communication of data. From a security protocol perspective, TLS’s ability to
secure communications between two TCP ports is one of its primary advantages. An
individual port typically translates to an individual application on a client system,
providing isolation between the many applications that could be potential attack points
for the client.

This client-centered view is important. As the benchmark metrics will show, client
metrics are the primary performance driver. For a client, the ability to connect to
many services and transfer data seamlessly is key. On the server side, this translates
into the number of new connections per second a server can create. This viewpoint
identifies the key metric to drive analysis with the number of SSL/TLS handshakes per
second for a SSL/TLS server.

4.5 Benchmark Topology
For the measurement of SSL/TLS performance, a web server was analyzed using
NGINX* as the management application. The topology for the benchmark is shown in
the following figure.

Figure 5. Client-Server Benchmark Overview

Note: For more complete information about performance and benchmark results, visit
www.intel.com/benchmarks.

In this configuration, a large number of clients are connected to a single server
system, with each client running in a loop fetching data from the server. Once each
client completes its operation, it will loop and initiate the same operation again,
running for a predetermined amount of time.

Performance

 Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
January 2018 White Paper
Document Number: 337003-001 17

The following figure shows the physical topology for the Web Server benchmark used
for TLS handshake measurements. The client issues requests using s_time, a utility
provided with OpenSSL, which is forked to provide 500-700 instances of s_time
running simultaneously to scale to full performance. Each instance runs as a separate
process and targets a specific TCP port on the server. The s_time command line used
is used in the following form: ./openssl-1.0.2d/apps/openssl s_time -connect
192.168.1.1:4400 -new –nbio -time 200 -cipher <cipher suite e.g. AES128-
SHA>

Figure 6. Web-Server Physical Topology

NGINX (port 4400)
Worker Processes

matches the
number of

hyperthreads

10G NIC
192.168.1.1

10G NIC
192.168.2.1

Server (Intel® Xeon® Gold 6152 processor)

S_time
192.168.1.1.4400

Client

10G NIC
192.168.1.2

10G NIC
192.168.2.2

S_time
192.168.2.1.4404

S_time
192.168.y.1:xxxx

Each s_time block is 500-700
instances of s_time run as separate

processes, allowing the OS to
schedule their core assignment

Note: Refer to Appendix A for configuration details.

On the server side, the NGINX* configuration file (along with the client request)
coordinate the cipher suites and key negotiation algorithms to use in each test. For
these benchmarks, the following combinations were used:

Table 7. TLS Benchmark Test Parameters

Application Data 0 byte file size

Key Negotiation
Algorithm

RSA-2K
ECDHE-RSA-2K (P256)
ECDHE-ECDSA (P256)

Protocol TLS v1.2

Cipher Suite AES_128_CBC_HMAC_SHA1

Performance

Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
White Paper January 2018
18 Document Number: 337003-001

Figure 7. RSA-2K Connections per Second (NGINX-1.10 + OpenSSL-1.1.0)

Figure 8. ECDHE-RSA-2K Connections per Second (NGINX-1.10 + OpenSSL-1.1.0)

Performance

 Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
January 2018 White Paper
Document Number: 337003-001 19

Figure 9. ECDHE-ECDSA Connections per Second (NGINX-1.10 + OpenSSL-1.1.0)

Figure 7, Figure 8, and Figure 9 represent measurements taken with the same
benchmark and stack, using Intel® QAT with OpenSSL-1.1.0 asynchronous features
and OpenSSL-1.1.0’s default software implementations for the three most popular key
negotiation algorithms (ECDHE-RSA2K (P256), ECDHE-ECDSA (P256), and RSA-2K).
This benchmark is scaled by limiting the resources available to NGINX* to a specified
number of cores and hyperthreads. If we look in more detail at the one core two hyper
thread (1C/2T) measurement for RSA-2K TLS-1.2:

• OpenSSL-1.1.0 Software: 964 CPS (connections per second)
• Intel® QuickAssist Technology Engine: 5,507 CPS

In conjunction with the new asynchronous features added to OpenSSL-1.1.0, Intel®
QAT is able to achieve a performance gain of approximately 825% performance
compared to the standard software implementation. This performance increase is
measured by issuing a sufficient number of client TLS connections to drive the server
processor for the chosen core configuration to greater-than-90% utilization. This
method is then extended to additional core configurations until reaching the limit of
Intel® QAT’s ability to calculate the cryptographic operations being targeted. The limits
for the Intel® Communications Chipset 8950 are as follows:

• RSA-2K: 102 K decryptions per second
• ECDHE+RSA-2K: 42.03 K operations per second
• ECDHE+ECDSA (P256): 48.33 K operations per second

Intel® QuickAssist Technology + OpenSSL-1.1.0 asynchronous features deliver a gain
over software (up to the device limits) of:

• RSA-2K ~5.5 times
• ECDHE-RSA-2K ~5 times
• ECDHE-ECDSA ~1.3 times

Note: Further improvements are currently being developed to increase performance gains
when using ECDHE-ECDSA.

Performance

Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
White Paper January 2018
20 Document Number: 337003-001

The core to hyperthread pairing for asynchronous measurements scales well for all
algorithms, meaning as more cores are added, the increase in connections per second
trends linearly. For RSA-2K, the limit of the hardware accelerator is reached using
around 18 cores/36 hyper threads (which translates to 360 NGINX* worker
processes), while for ECDHE-RSA-2K and ECDHE-ECDSA, they scale well up to the
hardware limits.

Figure 10. Comparison of Synchronous versus Asynchronous Infrastructure

These three modes can be easily configured using the NGINX* patch, which allows you
to enable and disable the QAT_ engine using the NGINX* config directive ssl_engine
qat;. Similarly, synch/asynch can be toggled using the directive ssl_asynch on. The
benchmark is run with the same mapping of NGINX* worker processes to cores/hyper
threads as previously mentioned.

As shown by the results in Figure 10, there is a clear advantage to using the
asynchronous model when a separate processing entity is present for cryptographic
calculations within the system. It allows for efficient parallel processing of the
workloads and better utilization of the available hardware. It should be noted that
while similar performance results can be achieved by parallelizing with a high level
context mechanism such as threads or processes, those methods consume
significantly more processor cycles to achieve the same results as the asynchronous
model.

§

Conclusion

 Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
January 2018 White Paper
Document Number: 337003-001 21

5 Conclusion
The OpenSSL 1.1.0 release provides many new features. This work has focused on the
asynchronous capabilities, which demonstrate a significant performance gain when
utilizing a high-performing asynchronous engine (Intel® QuickAssist Technology C627)
with the ASYNC_JOB infrastructure to efficiently manage the processing flow. For
asymmetric cryptographic algorithms such as RSA-2K, there is a demonstrable
performance gain of 7.5 times versus software with the same number of cores, while
at the algorithm level the gain shows a more dramatic performance increase of 36
times.

While these levels of performance may already be achievable with bespoke SSL/TLS
stacks, this is the first introduction to the mainline of a popular SSL/TLS stack
enabling these levels. As a standardized interface in OpenSSL, it lays the
infrastructure for many applications to adopt these features and opens a significant
potential to increase SSL/TLS more generally.

§

Platform Details

Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
White Paper January 2018
22 Document Number: 337003-001

Appendix A Platform Details

Hardware

Motherboard Intel® Purley

Processor

Product Intel® Xeon® Gold 6152 processor @ 2.10 GHz

Speed (MHz) 2.10 GHz

No of
processor 22 cores /33 threads per socket

Stepping H0

Technology 14 nm

Supported
Instructions
Sets

fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm
pbe syscall nx pdpe1gb rdtscp lm constant_tsc art
arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc
aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx
smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1
sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx
f16c rdrand lahf_lm abm 3dnowprefetch epb intel_pt
tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust
bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx avx512f
rdseed adx smap clflushopt clwb avx512cd xsaveopt xsavec
xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local
dtherm ida arat pln pts hwp hwp_act_window hwp_epp
hwp_pkg_req

Level 1 Data
Cache 32 KB

Level 1
Instruction
Cache

32 KB

L2 Cache 1024 KB

LLC Cache 30976 KB

Memory

Vendor Kingston

Type DDR4-2400

Part Number KVR24R170/16

Size 16384 MB

Channel 6

BIOS

Vendor Intel

Version PLYDCRB1.86B.0114.R11.1612211902

Build Date 21-Dec-16

Compiler
Versions

GCC Version 5.4.0

Linker
Version (LD) 2.26.1

Platform Details

 Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
January 2018 White Paper
Document Number: 337003-001 23

Assembler
Version (AS) 2.26.1

Software

OS
Vendor Ubuntu 16.04.1 LTS

Kernel
Version 4.4.0-21

Benchmark
Software

Glibc-2.24
CBC Data Collected on:
 NGINX-1.9.6
 OpenSSL-1.0.1u
 QATL1.0.0-15
GCM and PKE Data Collected on:
 NGINX-1.10-3
 OpenSSL-1.1.0e
 QATL.1.0.0-15
 QAT Engine v0.5.24

Table 8. References

Item
Description

[1] "QAT_engine [github]" https://github.com/01org/QAT_Engine.

[2] "ASYNC_start_job"
https://www.openssl.org/docs/man1.1.0/crypto/ASYNC_start_job.html.

[3] "rfc5246," https://www.ietf.org/rfc/rfc5246.txt.

[4]
"Pseudo Random Function (API addition)"
https://github.com/openssl/openssl/commit/1eff3485b63f84956b5f212aa4d853783
bf6c8b5.

[5]
"PRF integration into libssl"
https://github.com/fernandmorausky/openssl/commit/b7d60e7662f903fc2e5a137bf
1fce9a6b431776a.

[6]
"PRF EVP API man page"
https://www.openssl.org/docs/manmaster/man3/EVP_PKEY_CTX_set_tls1_prf_md.
html.

[7]
"ASYNC_WAIT_CTX"
https://www.openssl.org/docs/manmaster/man3/EVP_PKEY_CTX_set_tls1_prf_md.
html.

[8] "SSL_get_error" https://www.openssl.org/docs/man1.1.0/ssl/SSL_get_error.html.

[9] "SSL_get_all_async_fds"
https://www.openssl.org/docs/man1.1.0/ssl/SSL_get_all_async_fds.html.

[10] "SSL_CTX_set_max_pipelines"
https://www.openssl.org/docs/man1.1.0/ssl/SSL_CTX_set_max_pipelines.html.

https://github.com/fernandmorausky/openssl/commit/b7d60e7662f903fc2e5a137bf1fce9a6b431776a
https://github.com/fernandmorausky/openssl/commit/b7d60e7662f903fc2e5a137bf1fce9a6b431776a

Platform Details

Intel® QuickAssist Technology (Intel® QAT) and OpenSSL-1.1.0: Performance
White Paper January 2018
24 Document Number: 337003-001

Item
Description

[11]
"SSL_CTX_set_split_send_fragment"
https://www.openssl.org/docs/man1.1.0/ssl/SSL_CTX_set_split_send_fragment.ht
ml.

[12]
"Intel QuickAssist Technology engine build options"
https://github.com/01org/QAT_Engine#intel-quickassist-technology-openssl-
engine-build-options.

[13] "OpenSSL configuration file" https://github.com/01org/QAT_Engine#using-the-
openssl-configuration-file-to-loadinitialize-engines.

[14] "ENGINE_set_default"
https://www.openssl.org/docs/man1.1.0/crypto/ENGINE_set_default.html.

[15] "QAT_engine specific messages" https://github.com/01org/QAT_Engine#intel-
quickassist-technology-openssl-engine-specific-messages.

[16] "SSL_set_mode" https://www.openssl.org/docs/man1.1.0/ssl/SSL_set_mode.html.

[17] "Async job pool" https://github.com/openssl/openssl/blob/OpenSSL_1_1_0-
stable/ssl/ssl_lib.c.

[18] "Epoll openssl speed" https://github.com/openssl/openssl/blob/OpenSSL_1_1_0-
stable/apps/speed.c.

[19] "Dummy Async Engine" https://github.com/openssl/openssl/blob/OpenSSL_1_1_0-
stable/engines/e_dasync.c.

Software and workloads used in performance tests may have been optimized for
performance only on Intel microprocessors. Performance tests are measured using
specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other
products. For more information, visit http://www.intel.com/performance.

§

	1 Introduction
	1.1 Terminology

	2 Asynchronous Operations
	2.1 Motivation: Design for Performance
	2.2 Why Async?
	2.3 Design
	2.4 ASYNC_JOB Infrastructure
	2.5 ASYNC Event Notification

	3 Additional Performance Optimizations
	3.1 Pipelining
	3.2 Pseudo Random Function (PRF)
	3.3 Intel® QuickAssist Technology (Intel® QAT) Engine
	3.4 Big/Small Request Offload

	4 Performance
	4.1 Benchmark and Results
	4.2 Algorithmic Performance (openssl speed)
	4.3 Symmetric Algorithm Performance
	4.4 Application-Level Benchmark (NGINX-1.10 + OpenSSL-1.1.0)
	4.5 Benchmark Topology

	5 Conclusion
	Appendix A Platform Details

